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ABSTRACT 

We show tha t  the number  of integers n < x which occur as indices of 

subgroups of nonabelian finite simple groups, excluding tha t  of An-1 in 

An, is ~ hx/logx, for some given constant h. This might be regarded 
as a noncommutative analogue of the Prime Number Theorem (which 
counts indices n _< x of subgroups of abelian simple groups). 

We conclude that  for most positive integers n, the only quasiprimitive 
permutat ion groups of degree n a r e  Sn and An in their  natural  action. 

This extends a similar result for primitive permutat ion groups obtained 
by Cameron, Neumann and Teague in 1982. 

Our proof combines group-theoretic and number-theoretic methods. In 

particular, we use the classification of finite simple groups, and we also 

apply sieve methods to estimate the size of some interesting sets of primes. 
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1. I n t r o d u c t i o n  

By the Prime Number Theorem there are O(x/logx) integers n _< x which 

are primes, that  is, orders of abelian finite simple groups. As a result of the 

Classification of the nonabelian finite simple groups and their order formulae 

one concludes easily that  O(x/log x) integers n _< x occur as orders of finite 

simple groups. 

In 1982 Cameron, Neumann and Teague [CNT] showed that  O(x/logx) 
integers n _< x occur as indices IG : MI, where G is a finite simple group, 

M is a maximal subgroup of G, and (G,M) ~ (An,An-I) for any n >_ 5. It 

follows from our first theorem that  the same conclusion holds if the condition 

that  M is maximal is removed. 

The major motivation of Cameron, Neumann and Teague in proving their 

theorem about simple groups was to study finite permutation groups. They 

applied their result to prove that  the set of degrees n of primitive permuta- 

tion groups, other than An and Sn, has density zero in the natural numbers. 

Like them, our principal focus is the degree set of certain families of permu- 

tation groups. We show in Theorems 1.5 and 1.6 that  the sets of degrees n 

of quasiprimitive permutation groups and of innately transitive permutation 

groups, other than An and Sn, also have density zero. 

Our proofs combine various tools from group theory and number theory. We 

adopt standard number-theoretic notation. In particular, ~(x) denotes the num- 

ber of primes < x, r denotes the Euler function, and for real functions f ,  g we 

write f ,-~ g if f(x)/g(x) --4 1 as x --4 oc. 

Define a constant h by 
,--,cr 1 

h = L dr 
d=l  

It is easy to prove that  h < ce, and computer estimates can be used to show 

that  h = 1.763085 . . . .  We are grateful to John Bamberg and Devin Kilminster 

for this computation. 

For a subset N _C N and a real number x > 1, set N(x) = I{n E NIn <_ x}l. 
Define 

I ={IG : HI I G a finite nonabelian simple group, H < G, and 

(G,H) r (An,An-i)}. 

We can now state our first main result. 
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/2 = {IG : HI I G a finite nonabelian simple group, H < G, and 

(G,H) r (An,A~-I)  or (PSL(2 ,p) ,H)  with H e S(p)}. 

THEOREM 1.2: With the above notation we have 

/ l ( x ) =  logx + O  lo " 

THEOREM 1.3: With the above notation we have 

I2(x) = O(z48/49). 

Since I = I 1 0 / 2  it follows from Theorems 1.2 and 1.3 that  

( x )  
logx + 0 (logx) 2 �9 

In particular this implies Theorem 1.1. 

To compare these results to those of [CNT], define 

J = {IG : MI[  G a finite nonabelian simple group, M < G maximal, 

and (G,M) 7~ (An,An-i)} ,  

and 

and 

J2 = {IG : MI I G a finite nonabelian simple group, M < G maximal, 

(G, M) 7~ (An, An- l ) ,  and if G = PSL(2,p) with p prime 

then IG: M I r p +  1}. 

With the above notation we have 

x 

I(x) ~ hiog x.  

Theorem 1.1 follows from two more detailed results. In order to state them we 

need more definitions. For an odd prime p let S(p) denote the set of subgroups 

H of PSL(2, p) which are contained in a parabolic subgroup and contain a Sylow 

p-subgroup. Thus H C S(p) is a semidirect product of a cyclic group of order p 

with a cyclic group of order dividing (p - 1)/2. 

Let 

/1 = {IPSL(2,P) :  H[[p  an odd prime, H e S(p)}, 
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Then it was is shown in [CNT] that  

J2(x) = v~x  1/2 + O(  x1/2 ~ ~- 0(X1/2), 
\ l o g x /  

and since J = {p + 1 ] p prime } U J2 we have 

J(x) = 7c(x - 1) + O(x 1/2) ~ x / logx .  

Combining this with Theorem 1.1 we obtain the following. 

COROLLARY 1.4: With the above notation we have 

J(x) / I (x)  --+ 1/h as x --+ oc. 

Hence, roughly speaking, the probability that  an index of a subgroup of some 

finite simple group (excluding An-a in An) is an index of a maximal subgroup 

of some finite simple group (excluding An-1 in An) is 1/h = 0.567 .. . .  

We now turn to applications to finite permutation groups. Recall that  a 

transitive permutation group is said to be p r imi t ive  if it does not preserve 

a non-trivial partition of the permutation domain. The main result of [CNT] 

deals with degrees of primitive permutation groups, that  is, with the set 

Degprim ---- {n I 3G < Sn, G primitive, G • An, Sn}. 

The main result of [CNT] shows that  

/ xl/2 \ 2__X_X 
Degprim(X ) = 2~r(x)+ (1 + vf2)x 1/2 + O~l-~gx) ,'~ logx" 

We extend this result to a larger family of finite permutation groups. 

A permutation group G is said to be quas ip r imi t i ve  if all the non-trivial 

normal subgroups of G are transitive. It is easy to see that  primitive groups 

are quasiprimitive, but the converse does not hold. For example, all simple 

transitive permutation groups are quasiprimitive, but they are only primitive if 

a point stabilizer is a maximal subgroup. 

Quasiprimitive groups arise in the study of 2-arc transitive graphs (see [Pr]) 

and other contexts, and it is interesting to find out which properties of primitive 

groups extend to quasiprimitive groups (see [PrSh]). 

Let 

Degqp = {n I 3G <_ Sn, G quasiprimitive, G ~ An, Sn}. 

Recall that  the density of a subset N C N is defined by lim supx_~  N(x) /x .  
Using Theorem 1.1 and an O'Nan-Scott  type theorem for quasiprimitive groups 

[Pr] we establish the main result of this paper. 
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THEOREM 1.5: With the above notation we have 

x 
Degqp(X) ~ (h § 1)log x. 

In particular Degqp has density zero. 

We may therefore say that for most integers n, the only quasiprimitive per- 

mutation groups of degree n are An and Sn. In fact our arguments show that 

x 
Degqp(X) : ( h§  1 ) 1 o - ~ §  ). 

The proof of Theorem 1.5 applies also to a larger family of transitive permu- 

tation groups, namely the family of finite innately transitive groups. A permu- 

tation group is said to be i n n a t e l y  t r a n s i t i v e  if it has a transitive minimal 

normal subgroup. Such groups often arise as automorphism groups of arc- 
transitive graphs and their structure has been studied in [BPr]. In particular, 

every quasiprimitive group is innately transitive. We include in Section 5, a 
proof that: 

THEOREM 1.6: 

where 

x ( x )  
Degit(x ) = (h + 1)l--~g x + O -(logx) 2 

Degit = {n I 9G < Sn, G innately transitive, G ~ An, Sn}. 

The layout of this paper is as follows. Section 2 is the main number-theoretic 

section, devoted to the proof of Theorem 1.2. The proof of Theorem 1.3 is 

carried out in Sections 3 and 4, dealing with alternating groups and Lie type 

groups respectively. Section 5 is devoted to quasiprimitive groups and the proof 
of Theorems 1.5 and 1.6. 

2. A p r o b l e m  in prime number theory 

In this section we prove Theorem 1.2, counting indices I PSL(2,p) : H l with 

H E S(p). Since I PSL(2,p) : H I = d(p § 1) where dl( p - 1)/2, Theorem 1.2 is 
equivalent to the following number-theoretic result. 

THEOREM 2.1: Define 

N(x )  = I{n E N : n  _< x,3p, d E N,p prime, n = d(p+ 1),2dl( p -  1)} I. 
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x 

log x + O 

h = 

d=l  

One can also write h as a product 

4 l- ' t  p3 _ p2 -4- 1 
h 

g 1>13 (p--1-)~2-- 1)' 

where p runs 

estimated the value of h using computer calculations, showing that  

over the odd primes. John Bamberg and Devin Kilminster 

(1) 

and 

(2) 

In Remark 2.2 at the end of the section, we make several comments about 

the size of the error term, and the constant implied by the O(. . . )  notation in 

Theorem 2.1. 

To prove the theorem we begin by writing 

and 

7r(x;q,a) = [{p <_ x :  p prime, ql( p -  a)}[ 

x 

d_<,/~ 

Then by the inclusion-exclusion principle we see that  

N(x) <_ No(x) 

N(x)  > N o ( x ) -  E N(x;d ,d ' )  
d < d' < , / ~  

where 

N(x;d,d ' )  = [{n E N : n < x,3p, p' prime, n = d(p+ 1) = d'(p' + 1), 

2d[(p - 1), 2d11(p ' - 1)} I. 

We proceed by estimating No (x) asymptotically, and showing that  the contri- 

bution from the terms N(x; d, d') is negligible. 

Isr. J. Math. 

1.76308527 < h < 1.76308545. 
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To handle No(x) our main tool is the Siegel-Walfisz Theorem, which states 
that for any positive integer m there is a constant c(m) > 0 such that 

1 fN dt 
7c(N;q,a) = r ~ + O ( N e x p { - c ( m ) ~ } )  

uniformly for q _< (log N) m, and for (a, q) = 1. In fact the usual references, such 
as Davenport [D; Chapter 22, (4)], give the corresponding result for the closely 
related function r  q, a), but it is an easy exercise to derive the result above 
from this. We shall take m = 100, which will be more than large enough. If 
d _< (logx) 5~ then 2d _< (log(x/d)) 1~176 as soon as x ~ Xo, say. Moreover, for such 

d we have 

14 x 

if x _> Xl, say. We also note that 

X X 
77(~ - 1 ; 2 d ,  1) = 7c(~;2d, 1 ) +  O(1). 

Thus if d _< (log x) 5~ we have 

f + ( ( c(100) x _ 2d, 1) 1 x/d dt x { \ ~  1; . - 71" + 0(1) r s2 logt O ~ e x p  2 l~ } ) 

l { x n  x 
- r logx/d + O ( ( l o g ~ d ) Z ) }  + O(( logx) '~176176 

1 x O[ xlog 2d O(  x 
- r  (d--~og x + -  \ ~lo-gg x-x))2 ) )  + (log x)lO0O) 

_ x ] 1 + 0 (log 2d~ 
d,(2 logx L logx,  J 

Here we have written 2d in the error term merely to cater for the case d = 1, 
and in the second equality above we have used 

f2 - Y exp{ c(100) x ) 
log t log y 2 (log x) 1~176176 / 

To handle the r function we note that for any integer m we have 

m 
(3) - -  << loglog(3m) << log(2m) 

r 

(recall that f << g means f = O(g)), whence 

1 ~ 1 
E dO(2d) - Z dr + O(D-I logD) 
d~D d = l  
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for D > 2 and 
log(2d) << 1. 

d<_D 

It therefore follows that  

O(3 ) ..--- rr - 1;2d, 1 - 
d<_Oogz) 5~ logx = dr 

X 

Finally, to handle values d > (logx) 5~ we use the trivial bound 

q, 1) <_ N/q, 

which shows that  
X 

7 r ( ~ -  1;2d, 1) _< x / 2 d  2. 

We deduce from this that  the overall contribution to No(x)  arising from terms 

d > (log x) 5~ is O(x(log x)-S~ It therefore follows that  

o o  ( (x )  
(4) No(x)  - logx dr + O (logx) 2 logx + O logx) 2 . 

We turn now to the terms N(x;  d, d~). We begin by considering the contribu- 

tion from the case d ~ > x 1/s. Since d~(p ~ + 1) < x this implies p~ < x 7/s. We 

now observe that  any positive integer m < x has O(x 1/24) divisors. Indeed, for 

any fixed e > 0 the number of divisors of such an m is O(xe).  Hence each value 

o f p  ~ _< x 7/s corresponds to O(x 1/24) integers d ~ >_ x 1/s such that  pt(dt + 1) _< x 

and 2d~l(p ' - 1). Moreover, since d'(p' + 1) has O(x 1/24) divisors, and since 

d(p + 1) = d~(p ' + 1), each pair p~, d ~ determines O(x 1/24) pairs p, d. It follows 

that  the total contribution to the summation in (2) arising from terms with 
d t > x 1/s is 

<< xT/8.xl/24.xl/24 = x2a/24. 

This is clearly satisfactory for our theorem. 

Henceforth we may assume that  d < d ~ < x 1/s. Now let g = h.c.f.(d, dr), say, 

and set d = gk, d ~ = ek'. If 2d I ( p -  1) and 2d' I (p' - 1) we may write p = 1 + 2ekm 

and p~ = 1 + 2ek~m ', so that  the condition n = d(p + 1) = dr(p ~ + 1) becomes 

(5) k(1 + gkm) = k'(1 + ek'm') .  

We plan to show that  p and p~ take the form 

(6) p = a + 2 e k k 1 2 s ,  p ~ = a  ~ +2gk2k~s, s E N U { 0 }  
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with appropriate non-negative integers a, a ~ depending only on k, k ~ and g. To 

do this we begin by remarking that  k k  t is coprime to g. For if q is a prime factor 

of both k, say, and g, then if we take (5) as a congruence modulo q we deduce 

that  q[k ~, which would contradict the coprimality of k and k ~. Thus we shall 

henceforth assume that  h . c . f . ( k k ' , g )  = 1, as well as h . c . f . ( k , k ' )  = 1. We now 

view (5) as a congruence modulo k r2, whence 

(7) gk2.m - k' - k (mod k'2), 

and write m0 = m0(g, k, k ~) for the smallest non-negative solution to this con- 

gruence. It is then apparent that  the entire set of solutions in non-negative 

integers m will be given by m = mo + 8k ~2, with s running over non-negative 

integers. Thus p takes the form p = 1 + 2gkm = 1 + 2gkmo + 2gkkt2s, which 

is of the shape required for (6) on taking a = 1 + 2gkmo. Moreover, since (7) 

holds with m replaced by m0 we must have gk2mo = k ~ - k + k~2ml, say. It is 

clear that  ml must be non-negative, since 

k ~ + k~2ml = k + g k 2 m o  > O. 

We now find that  

p l  d 
j ( p  + 1) - 1 

k 
= ~7(2 + 2~kmo + 2gkk'2s) - 1 

k ~ - k + k~2ml 2gkk~2s~ --s + 1 J k' k 
= 1 + 2k~ml + 2gk2k~s. 

This too is of the shape required for (6) on taking a ~ = 1 + 2k~ml .  This 

completes the proof of our assertion (6). We note for later reference that ,  from 

our definitions a = 1 + 2gkmo and a' = 1 + 2k~ml , where ~k2mo = k ~ - k + k~2ml , 

it follows that  

(8) ak  - a 'k '  = k'  - k. 

Since d(p + 1) _< x we see that  d.2gkk'2s < x ,  whence s <_ x / (292k2k '2) .  It 

follows that  

N ( x ;  d, d') < 

(9) [{s c z : 0  < s < 
x 

_ _ 2(ekk,)2,a + 2gkk'2s and a' + 2ek2k ' s  prime}[. 
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If either a or a '  contains a factor in common with 2gkk r then we cannot ob- 

tain primes except, possibly, for s = 0. Thus we shall assume henceforth tha t  

h.c.f.(aa', 2ekk r) = 1. To est imate the right-hand side of (9) we shall use a result 

from sieve methods,  namely Theorem 4.1 of Halbers tam and Richert [HR]. This 

result refers to a sequence .4 which we shall take to be 

.4 = {(a + 2gkk'2s)(a ' + 2gk2k's) : 0 < s < x/2(gkk')2}. 

We have also to fix a set of primes P ,  which we take to be the set of all 

primes. Then S(`4; P ,  z) denotes the number  of elements in the sequence .4 

all of whose prime factors are at least z, and we will choose the value of z 

later. Thus if a + 2gkk~2s and a ~ + 2gk2kts are both prime, the element 

(a + 2gkU2s)(a ~ + 2gk2Us) E `4 will be counted by S(`4;P,z ) ,  providing tha t  

a + 2gkk~2s and a r + 2ek~krs are both at least z. It  follows that  

N(x; d, d') < S(`4; P,  z) + z. 

We shall define an ari thmetic function w(c) to be the number of solutions s of 

the congruence (a+2gkk'2s)(a ' +2gk2k's) =_ 0 (rood c) in the range 1 < s < c. 

Then w(c) is multiplicative. Moreover, when c is a prime p we have 

0 if pl2gkk', 
w ( p ) =  1 i f p l ( a k - a ' k ' ) , p ~ 2 g k k ' ,  

2 otherwise. 

Thus the conditions (f~l) and ft2(~) required by Halbers tam and Richert hold 

with ~ = 2. Finally, we note that  the number of elements in .4 which are 

divisible by a given number  c takes the form w(c)X/c  + R~, where 

x 
X = l + 2 ( g k k , )  2, IR~l_<a~(c)- 

We are now ready to apply Halbers tam and Richert [HR; Theorem 4.1], which 

produces 

<< xw(z)+ 
C ~ Z  2 

where 

P p<z 

It(n) is the MSbius function, and u(n) is the number of distinct prime factors 

of n. Since 

(10) (gkk') 2 < d2.d '2 < (xl/S) a = x 1/2 
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we see that  1 << x/(gkk') 2, whence 

X << x/(gkk') 2. 

To estimate W(z) we set A = 2gkk'(ak - a'k'). Then by (8), we have 

(11) A =  2gkk'(k ' -  k). 

We now have 

w ( : )  = H (1 - ~(p)/p) 
p< z  

< H (1 - 2/p) 
p<z ,p~A 

<< H (1 - 1/P)-2 H ( 1 -  1/p) 2. 
plA p<z  

Now, by Mertens' Theorem we have I-Iv<z(1 - 1/p) << (logz) -1. Thus, noting 

that  1- ]p l~ (1  - Up) -1 = A / C ( A ) ,  this yields 

A2 

w(=) << r  z)-2. 

Since d = gk < d' = gk' it is clear from (11) that  1 < A _< 2s 3 . Thus (3) 

produces 
A2 

r << (log d') 2 

and hence 

Finally, we estimate 

( logd '  ~ 2 
W(z) << \|-~7-gz + " 

Z p2(d)3~'(d)w(d)" 
d< z  "- 

Trivially we have w(d) < 2 ~(a) and u(d) < (log d) / (log 2) , whence 

3"(d)w(d) < 8"(d) < d 3. 

It follows that  the sum above is at most z s. Putt ing all these estimates together 

we therefore conclude that  

x ( l o g d " ~ 2  z s 
S(.A; P ,  z) << (gkk,)--------- ~ \ log z ] + 
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for 1 _< d < d ~ < x 1/s, and hence that  

x ( logdr)2 z s. 
N ( x ; d , d ' )  << (gkk,)-----Z\ logz } + 

We now choose z = x 1/24. The bound (10) then implies 

x (log d',~ 2 xl /2 1 xl /3 
(gkk') 2 \l'l~gzgz] >> (log x) - - - - - -Z  >> ' 

whence we may conclude that  

x (logd"~ 2 
N ( x; d, d') << ( gkk,) 2 \ li-o-'g--xg x ] " 

It remains to estimate the contribution of these terms to the sum occurring 

in (2). That  is to say, we have to bound 

x ( log d' ) 2 

(ekk')  \l-Ugg;gx J ' 
d<d~ ( x l / S  

with d = gk, d ~ = gU. We shall ignore the condition h.c.f.(k, U) = 1. The above 

expression is then at most 

(l~ k=l k,=l h=l (gkk')2 " 

Since the triple sum is convergent the total is O(x(log x)-2). Theorem 2.1 now 

follows from this, in view of (1), (2) and (4). 

Remark 2.2: We conclude this section with two remarks. Firstly we note that  

the argument above produces 

Y ( x ;  1, 2) << x/(log x) 2, 

for example. We expect that  this can be improved to give 
x ( x )  

N(x;  1, 2) = ~(logx) 2 + o (logx) 2 

with an appropriate constant ~, but it appears that  this is at least as hard as 

the Twin Prime problem. Thus there is presently no hope of improving the 

error term specified in Theorem 2.1. Secondly, we observe that  the proof of the 

Siegel-Walfisz Theorem is 'ineffective'. That  is to say, the proof cannot provide 

an explicit value for the constant implied by the O(. . . )  notation. It follows 

that  the implied constant in Theorem 2.1 is also ineffective. This can probably 

be avoided by a more delicate argument using a weaker effective version of the 

Siegel-Walfisz Theorem. 
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3. Al t e rna t ing  groups 

This section, and the section following it, are devoted to the proof of Theorem 
1.3. 

Here we study the subset of I arising from subgroups of finite alternating 
groups. We introduce the following notation. 

IAlt = {IG: HI G = An, H < G, and IG: H I > n}, 

(~ LargeA1 t = { I G : H ]  G = A n ,  H < G ,  a n d ] G : H  I > [n/21 /2}, 

SmallAlt = {IG: HI G = An, H < G, and ?2 < IG: HI < [72/21 / } 

Clearly IAlt = LargeMt U SmallAlt. Our aim in this section is to prove the 
following. 

THEOREM 3.1: With the above notation we have IAlt(X) ~ ( V ~ q -  1)x 1/2. 

We begin by determining an upper bound for certain values of the integer 
function d(m), where d(m) denotes the number of divisors of a positive integer 
m.  

LEMMA 3.2: Let k be a positive integer. Then there exists a constant c such 
that, for all n, d(n! k) <_ e (c+l~176 

Proof: Let n! = l-I pa,, be the prime factorization of n!. Then ap - llp<_n 

~ i > l [ n / p  i] <_ (n - 1 ) / ( p -  1), and so kap + 1 < k(n - 1)/(p - 1) + 1 < 2kn/p.  
Hence 

d(n!k) = I I  (kap + 1) <: I I  (2k?2/p) = (2kn)~(n) / ( I I  p). 
p<n p<_n p<_n 

Therefore 

logd(n! k) <_ ~r(n)log (2k) + ~r(n)logn - O(n), 

where O(n) = Y'~p<n logp. 

We use the standard estimates 7r(n) _< n / l o g n  + cn/( logn)  2 and O(n) >_ 

n - c n / l o g n  (see [SS, pp. 31-32] for even sharper estimates) to obtain 

?2 CI't C72 c n  
l~ <<- ( l~gn  + (logn)2) l~ (2k) + (n + l o - - ~ ) -  ( n -  lo----~) 

n 
-- (2c + log (2k) + o(1)) log n . 

The result follows. | 
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Note that  the bound above is best possible up to the constant c; indeed 

we have d(n!) > 2 ~(~) _> e c'n/l~ We now apply this result to estimate 

LargeAlt (x). 

LEMMA 3.3: We have Largei l t (x ) _< x c/l~176 for some constant c. 

Proof." Let ra E LargeM t with m _< x. Then there is n and a subgroup H < An 
n such that m = JAn: HI > ([n/2])/2 >_ 2 n/3. Hence n _< a l o g m  _< a logx ,  where 

a = 3 / log2 .  Obviously we also have mln!. It follows that,  given n _< a logx ,  

there are at most d(n!) choices for m, and so applying Lemma 3.2 above we 

obtain 

LargeA't(x) ~ E d(n!) < E ecn/'~ 
5 < n < a  log x 5 < n < a  log x 

This yields 

LargeAlt(x ) < a logx  �9 e c' ,og z/ log log x = a l o g x  �9 x c'/l~176 

from which the result follows. | 

LEMMA 3.4: With the above notation we have Smallhlt(x) ~ (x/2 + 1)x U2. 

ProoL" An has subgroups of indices (~) and 2(~), and the number of such 

indices up to x is ( v ~ +  1)x 1/2 + O(1). It remains to show that  the contribution 

of the other indices m is o(xl/2). 
Let m E SmallMt with m _< x be such an index. Then there is n and a 

n 2 subgroup H < An of index m < ([n/2]) / ' satisfying m ~ n, (~) 2 ( i  ). We may 

assume that  n > 9. Then by [DM, Theorem 5.2A], there exists r < n/2 and a 

subset A of size n - r of the permutation domain f/, such that  

Alt(A) < U _< Sym(A) x Sym(~ \ A). 

It follows that  m = (~)d, where d is a divisor of r!. Using the trivial inequality 

(r n) ___ 2 r (for r < n/2) we see that  r _< log x~ log 2. We also have r > 3 by our 

assumption on m. 

Now, given r, there are at most d(r!) choices for d, and at most O(x 1/3) 
choices for n satisfying (~) _< x. By Lemma 3.2, d(r!) <_ e cr/l~ and since 

r _< logx / log2 ,  we have e cr/l~ <_ x ~'/l~176 for some constant c t. It follows 

that  
Smallhlt(x) = (V~ + 1)x 1/z + O(xa/3+~'/l~176 

and this implies the required conclusion. | 

Theorem 3.1 now follows fi'om Lemmas 3.3 and 3.4. 
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4. G r o u p s  o f  Lie  t y p e  

In this section we study the subset of ! arising from subgroups of finite simple 

groups of Lie type, thereby completing the proof of Theorem 1.3. Since the 

contributions from finite alternating groups have already been considered, we 

assume that  the Lie type simple group is not isomorphic to As, A6 or As, that  

is to say, we study the set 

ILie : {IG : HI]  G a Lie type simple group, H < G, and G ~ Ah,A6,As}. 

Let J2 be as in the Introduction, and define 

/3 = {hi  ~ m E J2, rain, and n _< m24}. 

The main result of this section is Theorem 4.4 below, which proves in 

particular that  ILie NI2 C /3. We shall also show that  I3(x) = O(x4S/49), and 

this will complete the proof of Theorem 1.3. 

We need some preparations. 

LEMMA 4.1: There exists a constant c such that, for y > O, 

E m -  1 < cy -1/2. 

mEJ2,m>y 

In particular, ErnEg2 m-1 < 00. 

Proof As noted in the Introduction it follows from [CNT] that  J2(x) <_ c'x 1/2 
for some constant d (in fact any c' > 21/2 will do for large x). Now let k _> 0. 

Then 

E rn-1 < J2(2k+lY) < C'(2k+lY)l/2 --c'21/22-k/2Y-1/2" 
-- 2ky -- 2ky 

l ,z  E J 2  
2 k y ~ m ~ 2 k - b l y  

Therefore 

E E E 
mEJ~,m>y k>0 ,,,.E J2 

-- 2 k y ~ m ( 2 k - b l y  

m-1 <- c'21/2y-1/2 E 2-k/2 < cy-1/2" 

k>O 

LEMMA 4.2: With the above notation we have I3(x) = O(x4S/49). 

Proof: Let n E /3 with X 48/49 ( ~t _< X. Then n has the form md for some 

rn E d2 satisfying rn 24 > n. Thus m ~4 > x 4s/49 and so m _> y, where y = x 2/40. 
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Given such an m, the integer d can be chosen in at most x m  -1 ways, and we 

see that 
I3(X) __~ X 48/49 T X" E m - l "  

mCJ2,m~_y 

Applying Lemma 4.1 we obtain 

/3 (x) ___ X 48/49 "[- X"  cy -U2 = x 48/49 q- c x  1-1 /49  = (c --[- l ) x  48/49. | 

We shall need the following information about  orders of classical simple groups 

and numbers of subspaces. 

LEMMA 4.3: 
(a) 

q n2-2  < [PSL(n,q)[ _< [SL(n,q)[ < q n2-1 ,  

q n2-3 < [PSV(n,q)[_<[SU(n,q)[  < q n2, 
qn2/2+n/2-1 < IPSp(n,q)[<_lSp(n,q)[  < qn2/2+n/2, 

qn2/2-[n/2]  - 1  < [P~~ < qn2/2-[n/2] .  

(b) For positive integers m, t, q with t <_ m, set 

t--1 
m 

t q i=O 

Then, for any constant v, 

t--1 
[ ] t m-u - i  + 1) > q t ( 2 m - - u - - 3 t / 2 - b l / 2 )  . 

(c) Let G be an n-dimensional classical simple group and V the underlying 

vector space over a field of order q, or order q2 i f  G is of unitary type. Then 

the table below contains a lower bound for the number of t-dimensional 

subspaces of V in the linear case, and the number of totally singular t- 

dimensional subspaces in the other cases (when such exist). 

Type G Lower bound 
linear PSL(n, q) qt(n-t) 
unitary PSU(n, q) qt(n-3t/2) 
symplectic PSp(n, q) qt(n-3t/2+x/2) 
orthogonal pf~O(n ' q) qt(n-3t/2-1/2) 

Proof: For the linear groups we have gcd(n, q - 1)1PSL(n,q)l = I SL(n,q) I = 
q n 2 _ l  n 1 l-L=2( - q-i) ,  and for n > 2 (see, for example, [NePr, Lemma 3.5]) 

n 

(12) 1_q-1 _q-2 < I I (1_  < 1_ q-1. 
i----1 
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This yields the upper bound, and the lower bound follows from 

I SL(n, q)l > qn2-2(q 2 - q - 1 ) / ( q - 1 )  = qn2_2(q_  q ____~)1 --> gcd(n, q - 1)q n2-2. 

The other inequalities follow in a similar manner. For the unitary case, 

n 

gcd(n,q -t- 1)] PSU(n, q) I = I SU(n,q)l = q n2-1 I1 (1  - ( -q)-~)  
i----2 

~-- qn2--1 H (1 + q - i )  

iodd,3<i<n 

(ii ~_ q n2-1 (1 - q-i)  

i odd,i>3 

and by (12) this is less than 

qn2_l 1 -- q-1 < qn2. 
1 - q-1 _ q-2 

Also 

I PSU(n, q)l _ qn2_l n 
gcd(n, q + 1) I I ( 1  - ( - q ) - i )  

i=2 
qn 2-1 

> qn2-1 H (1 - -q -2 j )  > q-2 q + 1 q-- -~(1  -- _ q-4), 
j<_n/2 

which is greater than q n2-3 if q _> 3, and the same lower bound holds also if 

q = 2 (we need to be a little more careful). The argument for PSp(n,q)  and 
P~~ are similar. 

To prove (b), note that since t _< m, each of the factors in the product defining 
m > qt(m--t). [ t  ]q is at least 1, and hence [ t ] q  - 

Since the number of t-dimensional subspaces of V is [ t ]  q we have the required 
lower bound for the linear case of (c). For the other cases (see [T, p. 174]) 

the number of totally singular t-dimensional subspaces of V is given by the 

expression in (b) where m is the Lie rank of G, and u takes the following values. 

G n v Comments 
PSU(n, q) 2m + 1 - 1 / 2  

2m 1/2 
PSp(n, q) 2m 0 
Pft  +(n,q) 2m 1 
P f t - (n ,  q) 2 m + 2  - 1  
Pf~(n, q) 2m + 1 0 

n -  1/2 = 2 r n -  v 
n -  1/2 = 2 m -  u 

n - l = 2 m - v  
n - l = 2 m - v  
n - l = 2 m - v  
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Note that  t < m. The lower bounds in (c) now follow immediately from (b). 

1 

A se c t i on  of a group G is a factor group A / B  where B _< A _< G and B < A. 

If a section is a simple group of Lie type we shall say that  the section is of Lie 

type, and if it is a classical simple group we shall call it a classical section. 

We shall say that  an index [G : H[ E ILie is n e s t e d  relative to m, where G 

is a simple group of Lie type and H < G, if there exists a Lie type section T of 

G and a maximal subgroup M of T such that  m = [T : M[, m divides [G : HI, 

and m 24 _> IG[. Note that  this implies I G : H I E /3 ,  unless T = PSL(2,p)  and 

m = p + l .  

Theorem 4.4 below refers to the type of a classical simple group: the pos- 

sibilities are that  the type is l i nea r  for G = PSL(n,q)  (n _> 2), u n i t a r y  for 

G = PSU(n,q)  (n _> 3), s y m p l e c t i c  for G = PSp(n,q)  (n _> 4, n even), or 

o r t h o g o n a l  for G = Pf~~ (where o is + with n even, or 'blank' with nq 

odd; also n _> 7). 

THEOREM 4.4: 

(a) ILie NI2 C 13. 

(b) Let I G : HI E ILie, where G is a simple group of Lie type, G ~ Ah, A6, As, 

and H < G. Then either 

(i) I G : H[ is nested relative to some m, or 

(ii) G is a classical simple group of dimension n >_ no, H is reducible 

inducing a classical group of the same type as G on a composition 

factor of dimension s > so(n), and [G : HI > q 3(n2-s2)/32' where 

(no,so(n)) is (24,3n/4) i f  G = PSL(n,q)  and (45,9n/16) in the 

other cases. 

Proof'. Let M be a maximal subgroup of G containing H,  so [G : HI is divisible 

by [G : M[. If G is a simple classical group then the minimal index of a maximal 

subgroup is given in [C] and upper bounds for [G[ in Lemma 4.3. For G = 

PSL(n,q)  we have IG : M[ _> an-1 and so [G : HI 24 _> q24(n-1) ~ qn2-1 > IGI 
i f n  _< 23. Similarly IG: H124 _> IGI for G -- PSU(n,q), PSp(n,q) or Pa~ 
if n _< 46, 44, or 44 respectively. For all these groups IG : HI is nested relative 

to m = IG : MI and either m E J2 whence IG : H[ ~ / 3 ,  or G = PSL2(p) and 

m = p + 1 with p prime. In the latter case, if p does not divide IH[, then H is 

cyclic of order dividing ( p -  1)/2 and H is also contained in a maximal subgroup 

M2 that  is dihedral of order p - 1. Using M2 in place of M we see that  IG : HI 

is nested relative to IG : M21 E J2 so [G : HI e/3.  On the other hand, if p 
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divides [H[, then H E S(p) and [G : HI is nested relative to p + 1. Moreover, 

if we assume [G : HI C Is we can exclude the latter case and conclude that  

IG : Hi E/3 ,  as required in part (a). 

In a similar fashion we can show that  if G is an exceptional Lie type group, 

then IG : HI is nested relative to some m = IG : M[ E J2 using information 

about the minimal index of a maximal subgroup M (see, for example, [LS1]). 

Thus IG :H{ C/3.  
Therefore, we may assume that  G is a classical simple group with dimension 

n at least 24, 47, 46, or 45 for the linear, unitary, symplectic or orthogonal 

types respectively. Let V denote the underlying vector space over a field F of 

order q, or of order q2 in the unitary case. We deal with the linear case first 

to demonstrate the broad strategy of our arguments. The other cases are more 

complicated and deserve separate treatment. 

LINEAR CASE. Here G = PSL(n,q) with n > 24. Suppose first that  H leaves 

invariant a t-dimensional subspace U of V with n/8  < t < 7n/8. Let M denote 

the stabiliser of U in G, so M is maximal in G and H _~ M < G. By Lemma 4.3, 
{G : M I >_ qt(n-t) >_ q7~2/64 > IG{r/64 and hence {G : H{ is nested relative to 

IG : M[ ~ J2 and {G : H I E/3 .  Thus we may assume that  any proper non-trivial 

H-invariant subspace has dimension less than n/8  or greater than 7n/8. Let 0 = 

Vo < V1 < " .  < Vk = V be a composition series for V as an FH-module,  where 

k > 1. Then H induces an irreducible subgroup Hi on V~/V/_I (i = 1 , . . . ,  k). 

Set ni dim(Vi/Vi-1), and s~ dim(V/) i = = " =  E j----1 nj,  for each i = 1 , . . . , k .  
Then for each i, si < n /8  or s~ > 7n/8. It follows that  there is an g such that  

ne > 3n/4.  Suppose that  He does not contain SL(ne, q) and let M be a maximal 

subgroup of SL(ne, q) that  contains He N SL(ne, q). Let M be the subgroup of 

T = PSL(ne, q) corresponding to M, so/~/ is  a proper irreducible subgroup of T 

and is maximal in T. By [LS2], Proposition 2, we have IT : 2~/] 5 > ITI. Hence, 
by Lemma 4.3, IT : 217/I 24 _> IT124/5 > q24(u~-2)/~ > q24(gn2/16-2)/5 > qn 2 > IGI, 

so IG : H I is nested relative to IT: 2~ I E J2 and IG : H I E/3 .  

This leaves the case where He contains SL(ne,q). In particular H is 

reducible, and stabilises V~ and ~ - 1 .  Let M be the stabiliser in G of Ve, 

and let N be the stabiliser in M of Ve-1. Then by Lemma 4.3, IG : H I is divis- 
ible by IG : MIIM : N I > qS,(n-S~)qn~(s~-n~) >_ qn~(n-n~); this is greater than 

q 3(n2-n~)/32. Thus (b) (ii) holds. Finally, we show that  IG : H I E /3. By 

Lemma 4.3, 
IG : HI ~ IGI/IPSL(ne,q)I < qn~-n~ +1. 

If n - se = d im(V/~)  > (n - he)~2, take M to be the stabiliser in G of Ve so 
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that  IG : M I > qS~(n-~) > q(n:-n~)/4. On the other hand, i f n - s ~  < (n -n~) /2  

so that  sl - n~ = dim(�89 > (n - n~)/2, take M to be the stabiliser in G of 

~ - 1 ,  so that  again IG : M I > q(S~-n~)(~-~+~) _> q(u:-n~)/4. In either case we 

have IG: M124 > IG : U  I and IG : M I E J2, so IG:HI E 13. 

C L A S S I C A L  CASE. In these remaining cases G preserves a non-degenerate bi- 

linear, sesqui-linear or quadratic form on V. Let W be an H-invariant subspace 

of V that  is maximal subject to being totally singular; possibly W = 0. Then 

W C W • Let t = dim(W) and suppose first that  t >_ n/8. Then, for M the 

stabiliser of W in G, it follows from Lemma 4.3 that  IG : M124 > IGI, so IG : H I 

is nested relative to IG : M I E J2 and IG : H I E 13. Thus we may assume that  

0 <_ t < n/8. In particular W ~ W • W •  is nonsingular and G induces on 

W •  a classical group of the same type as G. Set ra = n - 2 t  = dim(W •  

so m > 3n/4. 

Let W = Vo < V1 < ... < Vk = W • ( k >_ 1) correspond to a composition 

series for W •  as an FH-module.  For a subspace Y such that  W _< Y _< W • 

set Y = Y / W ,  so ~-k = W •  and 7oo = 0. Also, set ni = dim(V//V/_l) and 
i si = ~ j = l n j  = d i m ( V  0 for 1 < i  < k. For• > 0, V/• C W • sinceV/ D W; 

also, V~ • D W since Vi C W • Thus W _< V/• <_ W • Moreover, V/• N Vi is 

a totally singular H-invariant subspace containing W, so by the maximality of 

W, V~ • N V~ = W. Thus ~ N V~ • = 0, and it follows that  ~ is nonsingular and 

(Vii) • = V/• Moreover, V/-1 < V/, so (V--~--~_I) • > (~)•  Set W//:= (V--/_~_I) • A 

and let Wi be the subspace of W • containing W such that  W j W  = ~ .  Then 

V/-1 is the orthogonal direct sum Wi • V/-1 and Wi is nonsingular of dimension 

ni. It follows that  Vk = W1 • ... • Wk. Note that  the stabiliser in G of V/and 

Vi-1 also leaves invariant W = Vi • n V/and Wi, and induces on ~ a classical 

group of the same type as G. 

Suppose next that  for some 2, m/8 <_ se <_ 7m/8. In this case let T be the 

classical simple group induced by G on Vk, so T is of dimension m and of the 

same type as G. Let M be the stabiliser in T of the nonsingular se-dimensional 

subspace t~ of Vk. Then IT : M I divides IG : HI. Now M is a central product of 

the classical groups induced on ~ and ~ •  For each of the three types, using 

the bounds from Lemma 4.3 (a), we find that  IT : M124 > IGI and hence IG : H I 

is nested relative to IT : M I E J2 and IG : H I E/3 .  

We may now assume that  for each ~, either se < m/8 or se > 7m/8. Thus 

there exists g such that  ne > 3m/4 > 9n/16 _> 25. Let He, Ge denote the 

groups induced by H, G on We. Then He is an irreducible subgroup of Ge. 

Let S be the subgroup SU(m,q),Sp(m,q) or l~~ of G~ in the unitary, 
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symplectic or orthogonal cases respectively, and let S be the simple classical 

group corresponding to S. Suppose now that  He does not contain S, and let He 

be the subgroup of S corresponding to He N S. Then He is a proper irreducible 

subgroup of S. Let M be a maximal subgroup of S containing He. Then by 
[LS2], Proposition 2, ]3 :  MI 5 > ITI, so 13: M124 > IT124/5 and again using 

the bounds for Lemma 4.3 we find that  IS: M124 > IGI. Since IS: M I divides 

IG : HI, we have that  IG : HI is nested relative to IT : M I E J2 and IG : H I E 13. 

Thus we may assume that  He contains S. This means in particular that  st < n, 

so that  H is reducible. 

We have }G : H I ~_ IGI/IT], and by Lemma 4.3 (a), this is at most qZ where 

x = n 2 - n~ + 3, n2 /2  + n / 2  - n~/2 - ne /2  + 1, or n 2 / 2 -  [n/2] - n~/2 + [he~2] + 1 

for the unitary, symplectic, or orthogonal types, respectively. Suppose first that  

t >_ ( n - n e ) / 4 .  Take T = G and M to be the stabiliser in G of W. Then ]T : M I 

divides IG : H I and by Lemma 4.3 (c), ]T : M] > qY where (recall that  t < n /8 )  

1 3 1 

= 3-~(n - ne)(5n + 3ne - 4) 

> 3 ( n 2  _ 

so that  (b) (ii) holds, and in all cases 24y > x so IG : H I C 13. Thus we may 

assume that  t < ( n - n e ) / 4 ,  whence m - n e  = n - 2 t - n e  > ( n - n e ) / 2 .  Also, since 

ne > 9n/16, we have that  ne > 9(n + ne)/25.  Take T to be the classical simple 

group induced by G on Vk, and M to be the stabiliser in T of the nonsingular 

ne-dimensional subspace We. Then ]G : H I is divisible by IT : M[, and by 
Lemma 4.3 (a), IT : M] >_ qY where in the unitary case 

y > m 2 - 3 -  n~ - ( m -  ne) 2 

= 2ne(m - ne) - 3 

> 2  9 (n n -  ne 
�9 + n e ) ( ~ )  - 3 

3 2 
> 32(n - n~) 

and 24y > x so (b) (ii) holds and [G : H I E/3 .  In the symplectic and orthogonal 



368 D.R.  HEATH-BROWN, C. E. PRAEGER AND A. SHALEV Isr. J. Math. 

cases, 

ms ( m -  ne) 2 

~ > - Y ~ [ 2 ] - ~ -  ~ [ 2 t  2 ~ [ ~ F  ~] 
>_ n~(m-  n~) - 1 

and as in the unitary case this is greater than i~(n3 s _ n 2)e and 24y > x. Thus 

in all cases (b) (ii) holds and i G : H I C/3.  This completes the proof. | 

Combining Lemma 4.2 with Theorem 4.4(a) we obtain the following. 

COROLLARY 4 .5 :  (ILie N/2)(X) : O(x4S/49). 
We complete this section by proving Theorem 1.3. 

Note t h a t / 2  = IAit LJ(ILie N-Ts) LJ ISpor, where 

Ispor = {IG : HI ] G a finite sporadic simple group, H < G}. 

Applying Theorem 3.1, Corollary 4.5, and the finiteness of ISpor we obtain 

Is(x) -- O(x Us) + O(x 4s/49) + O(1) = O(x4S/49). 

Theorem 1.3 is proved. 

5. Quasiprimitive and innately transitive groups 

In this section we prove Theorems 1.5 and 1.6. Let G be a quasiprimitive 

or innately transitive permutation group on a set D of size n such that  G 

An or Sn. Then n lies in the set Degqp or Degit , respectively, as defined in 

the Introduction. It was shown, in [Pr] and [BPr] respectively, that  the finite 

quasiprimitive and innately transitive groups satisfy theorems similar to the 

O'Nan-Scott  Theorem for finite primitive groups. In particular, the results of 

[BPr, Pr] imply that  either n is the degree of a primitive permutation group, 

or n E I, or G has a unique transitive minimal normal subgroup N, and N has 

the form 
N = T 1  • 2 1 5 2 1 5  k 

for some nonabelian simple group T and integer k > 2; and, moreover, there 

is a proper nontrivial subgroup R of T such that  a point stabiliser in N is a 

subdirect subgroup of R k. This means that  

(13) n = d m  k, where m = IT : R], k _> 2, and d divides IR[ k-1. 

Thus in order to prove Theorems 1.5 and 1.6, we need to deal with quasiprimitive 

and innately transitive groups G of degree n as in (13). 
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Define 

PERMUTATION GROUPS 

Prod = {n I n = d m  k as in (13)} 

and set 

(14) Prodqp := ProdNDegqp and Prodit := ProdNDegit .  

369 

Introduction) that  

x x 

J l (x )  logx logx and J2(x) 0 ( x l / 2 ) .  

Thus 

(I n Degprim ) (x) -- J(x )  ,.~ x/log x. 

Combining this with Theorem 5.1 we conclude that,  for D = Degqp or Degit, 

D(x)  ~ Degprim (x) + I ( x )  - x/log x + 0(x48/49), 

which, by [CNT] and Theorem 1.1, yields 

2 x h x x - (h + x 
D(x)  N l~  + logx logx 1) logx '  

or, using Theorems 1.2 and 1.3 (instead of Theorem 1.1), 

n ( x )  = Degprim(X) + I ( x )  - J (x )  + O(x  4s/49) = (h + 1)1o~ x + O o 

This completes the proofs of Theorems 1.5 and 1.6. I 

The main result of this section is the following. 

THEOREM 5.1: With  the above notat ion we have 

Prod(x) = O(X48/49) .  

Before proceeding to prove this result we show how it can be used to prove 

Theorems 1.5 and 1.6. 

Proofs o f  Theorems 1.5 and 1.6: From the results in [BPr, Pr], as discussed 

above, we have 

Degqp = Degprim UI U Prodqp and Degit = Degprim UI U Prodit 

with Prodqp and Prodit as in (14). From the definitions of I and J in the 

Introduction, we have I = I1 U12 and INDegprim = J = J l U  J2, where 

for ~ = 1, 2, Ie n Degprim = Je- Moreover, it was proved in [CNT] (see the 
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Now we prove Theorem 5.1. We need additional notation. Define 

Prodil t  = {n I n = d m  k as in (13) with T an alternating group}, 

ProdLie = {n I n = d m  k as in (13) with T a Lie type simple group 

G ~ As, Ac, As }, 

Prodspor = {n I n = d m  k as in (13) with T a sporadic simple group}. 

Clearly Prod = ProdAlt t.J ProdLie U Prodspor. Since there are only finitely many 

sporadic simple groups, there are finitely many primes P l , . . . , P l  such that  the 

indices n C Prodspor have the form p~l ...p~Z where ai >_ 0, and this implies 

Prodspor(X) = O ( x  ~) for any e > 0. 

We complete the determination of Prod(x) by considering separately the alter- 

nating groups and the groups of Lie type. Note that,  for n < x as in (13), 

we have x > d m  k > rn k, so m < x 1/k and also k < logx / log5  < logx (since 

m = IT: RI >_ 5). 

LEMMA 5.2:  P r o d A l t ( x )  = 2x 1/2 + O(x l /3 ( logx )2 ) .  

Proof: Let n = d m  k E ProdMt wi thn_<  x, s o m =  I T : R  I w i t h T  = A t  for 

some r > 5. We divide the proof into three cases: (1) m = r, (2) m > 2 r/3, and 

(3) r < m < 2 r/3. 

CASE (1)  : Here, the stabiliser Na in N of a point a is a Ga-invariant subdirect 

subgroup of Akm_l. We shall show that  the contribution to ProdMt (x) from this 

case is 2x 1/2 + O(x l / 3 ( l ogx )2 ) .  Since N is a minimal normal subgroup of G 

and G = N G a ,  it follows that,  for m _> 6, Ga is transitive on the simple direct 

factors of Akm_l . Therefore, N~ is isomorphic to Atm_l for some divisor ~ of k. 

Thus the number of choices for d, given m and k, is the number d(k) of divisors 

of k. Therefore, the contribution to ProdMt(x) from case (1) is 

k--=2 m ( x l / k  k=3 

= 2xl /2 + O(x l /3 ( logx )2 ) .  

For m = 5, the socle of N .  is elementary abelian of order 2 2z for some divisor l 

[N.] = 4t3 l' for some l' < I. So the number of choices for d is of  k, and a t  most 

log 5 x 

(k + l)(k + 2)/2 _< c(log x) 3. 
k=2 
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CASE (2) :  Here m _~ 2 r/3, SO 2 rk/3 < n < x, that  is, 5k _< rk  <_ 31og x /  log 2. 

We shall show that  the contribution to ProdAlt(X) from this case is at most 

x c/l~176 for some constant c. Since N is transitive, n divides (r!) k. Thus the 

contribution is at most 

3 log x/5 log 2 3 logx/klog 2 \ 

v :5  k=2 

which by Lemma 3.2 is at most 

3 log x/5 log 2 Z ( 3 log ~_~ log 2 

k=2 r=5 

e(c+log k)r/log r )  . 

Since r~ logr  is an increasing function, this is at most 

where 

3 log x/5 log 2 
Z 310gXero(k,x } 
k=2 k log 2 

ro(k ,x)  = (c + logk ) .  31ogx .  ( log (31ogx'~]  

k log2 \ k l o g 2 / /  " 

Consider the partial sum for k < v ~ g  x. For such k, 

x 3 1 x 3log > ~ l x / ~  
k log 2 - 

and so ro(k, x) < c2 log x~ log log x for some constant c2. So this partial sum is 

at most 
1 clxC2/l~176 Z k ~ xC3/l~176 

k < v/iog x 

for some constants Ca, c3. Now for k _> x/~g x, r0 (k, x) is decreasing with k and 

is at most c~(logx) 1/2. Thus the second partial sum is at most 

3 log x/5 log 2 
t eC'2(logx) x/2 logx Z 1 , c1 -k < xC3/l~176 

k= v/~g x 

t ! for some constants q ,  c2, c~. 

CASE (3): Here 6 _< r + 1 _< m < 2 r/3, so in particular r > 10. We shall show 

that  the contribution to PrOdAlt(X) is at most x c/log log x for some constant c. 

Again n divides (r!) e. Note that  

L J) > > m, 
r 3r/3 > 23r 

r /3  - 
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whence by [DM, Theorem 5.7] it follows tha t  R induces As on some s-subset, 

where s > 2r/3 (so s _> 7). Since Na is a subdirect subgroup of R k, and since Ga 

is transitive on the k direct factors of R k, it follows tha t  Na has I composition 

factors isomorphic to As, for some divisor 1 of k. Thus n is of the form 

n = �9 (s!/2) k - l .  d' 

where d' divides (r - s)! k. Now x > n > (:)k _> 2sk, SO sk <_ l o g x / l o g 2 .  Given 

s and k satisfying this inequality, we choose r to satisfy s + 2 _< r < 3s/2,  then 

we choose a divisor l of k and a divisor d' of (r - s)! k. Thus the contribution 

from this case is at most 
1o 

log 2 

z z ( z 
k = 2  s = 7  s+2~_r<3s/2 

Now d(k) < k < logx and we use Lemma 3.2 to bound d((r - s)!k). This shows 

that  the contribution is at most 
log :c 

10gx Z Z e(C+logk)(r-s)/log(r-s) . 

k=2 s = 7  s+2~_r<3s/2 

Since (r - s) / log(r - s) is increasing with r, performing the inner summation 

over the s summands we see that  this is at most 

logx Z ~ s .  e (c+l~176 
k = 2  s----7 

Again, since the summand is an increasing function of s, performing the inner 

summation over the logx / (k  log 2) summands we see tha t  this is at most 

logx E'" 2  klog2J ( logx ) 
k=2 

NOW the exponent of e in the last factor is a decreasing function of k, so this is 

at most 

log2 1 ,, c, l o g x / l o g l o g x  c(l~176176176 Z -~ <- c e 
k = 2  

for some constants c, c', c". I I  

Finally we consider the Lie type groups. 
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LEMMA 5.3: For x sutt lciently large, ProdLie(X) < 4x 48/49. 

Proos Let n E ProdLie with n < x. Then  n = m k d  with k > 2, m = IT : RI, 

and  d divides [RI k - l ,  where T is a Lie type  s imple group  and  R < T.  By 

T h e o r e m  4.4, we m a y  divide these possibili t ies into two cases: (1) m = IT : R] 

is nested,  and (2) the  case where T, R are as in T h e o r e m  4.4 (b) (ii). 

CASE (1): In this case there  exists a s imple Lie type  section T '  of  T and 

a max ima l  subgroup  M of T '  such tha t ,  for u = IT I : M I, u divides m and 

U 24 ~_ ITI. There  are a t  mos t  X 4s/49 of these indices n such t ha t  n _< X 4s/49,  

and we shall show tha t ,  for large x, there  are less t han  2x 4s/49 such indices 

in the r a n g e x  4s/49 < n_< x. So assume now t h a t  x 4s/49 < n_< x. Then  as 

n < ]TI k <_ u 24k, we have u > x 2/49k. Now n = ukd  ' <_ x,  for some d' sat isfying 

d' < x / u  k. Hence the  number  of such n is a t  mos t  

log 5 x log 5 x 
x 

k : 2  u~x2/49k k : 2  2/49k 

log 5 x 
1 

k=2 

= X48/49 

< X48/49 

(k - 1)x 2(k-1)/49k 

l ~ x  X2/49k 
.~_ X47/49 ~ ---- "~) 

k : 3  

+ x 143/147 log 5 x < 2x 4s/49. 

Thus,  for x sufficiently large, there  are less t han  3X 48/49 indices n arising f rom 

Case (1). 

CASE (2): Here T is a classical s imple group  of dimension r > r0 over a field 

of order  q, R is reducible on the  under ly ing  vector  space and  induces a classical 

group T '  of  the same  type  as T on a composi t ion  factor  of d imension s > so(r),  

and m = I T : R [  > q 3(r2-s2)/32, where (r0, so(r)) = (24 ,3 r /4 )  if T = PSL( r ,q )  

and  (45, 9 r /16)  for the o ther  types.  In par t icular ,  we have s _> 19 and  r 2 - s 2 > 
r 2 - s o ( r )  2 > 252. Now q 3k(r2-s:)/32 < m k < n < x, so q << X 32/(3k(r2-s2)). Also 

m > q 3(r2-s:)/32 _> 2 (3• > 223, so k <_ l o g x / l o g m  <_ logx / (231og2) ;  

and for a given k, since x >_ q 3k(r2-s2)/32 > q3k(r+s)/32 > 23ks/16, we have 

s < 16 log x / 3 k  log 2. 

Since N~ is a subdi rec t  subgroup  of R k, and G a  is t rans i t ive  on the  k direct 

factors  R,  it follows t h a t  N~ has I composi t ion  factors  isomorphic  to T ' ,  for 

some divisor 1 of  k. Thus  the  degree n is of the  form n = m k �9 IT'I k-z �9 d' where 
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d' divides D := ([TI / ([T '[m))  k. We use the bounds in Lemma 4.3 (a) to obtain 

upper  bounds for D. Let D = qZ where z = log D / l o g q .  Then in the linear 

case we have 
z ~_ k ( ( r 2  - 1 )  - (s2 - 2) - 3 (r2 - s2))  

30 2 s2), 

so D < x 1~ Similar computat ions in the unitary case give D < x 31/3, and in 

the symplectic and orthogonal cases give D < x 14/3. In all cases D < X 11 . 

Suppose tha t  k is given. Since m k ~_ x we have at most x 1/k choices for m; 

since s <_ 1 6 1 o g x / 3 k l o g 2  we have less than 1 6 1 o g x / 3 k l o g 2  choices for s; and 
since q <_ X 32/(3k(r2-s2))  < X ue/756k (since r 2 - s 2 > 252), the number  of choices 

for q is less than x a2/756k. For a given s and q, the number of choices for T r is 

at most 5. Next, the number of choices for g dividing k is d(k) < k < logx, and 

the number  of choices for d r dividing D is d(D)  <_ x c/l~176 (since D < x n ) .  

Hence, given k, the number of choices for the degree n = m k [ T q k - e s  is less 

than 
x l  / k  . 16 log x . x32/756k . 5 �9 log x �9 x c~ log log x 

3k log 2 

and this is less than X 788/756k+~ for any e > 0 and large enough x. Since k _> 2, 

this quanti ty is at most X 1 9 7 / 3 7 8 + e .  Finally, since k _< log x, it follows tha t  the 

total  number of degrees in Case (2) is less than x 197/37s+~ for any e > 0 and 

sufficiently targe x. In particular, for large x, there are at most x 4s/49 indices n 

arising from Case (2), and this yields the required conclusion. | 

P r o o f  o f  Theorem 5.1: This follows immediately from Lemma 5.2 and Lemma 

5.3. | 
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